log4(2×4x−2−1)+4=2x log4(2×4x−2−1)=2x−4 ⇒42x−4=2×4x−2−1 42(x−2)−2×4x−2+1=0 Put 4x−2=t ⇒t2−2t+1=0 ⇒(t−1)2=0 ⇒t=1 ⇒4x−2=1 ⇒x−2=0 ⇒x=2 From the given equation , it follows that 2×4x−2−1>0 ⇒4x−2>12 ⇒22x−4>2−1 ⇒x>32 So, x=2 is the solution of the given eqn