The correct option is B x=−5π3
(i) −(x2+6x)>0⇒x(x+6)<0⇒x∈(−6,0)
Also −(x2+6x)≠10⇒x2+6x+10≠0, This true for all R
(ii) sin3x+sinx,sin2x>0
Now, sin3x+sinx=sin2x
⇒2sin2x.cosx=sinx⇒4sinx.cos2x=sinx
⇒cos2x=14⇒cosx=±12
Following condition (i) and (ii) the solution is, x=−5π3