solve : ∫(1−sec2θ)2dθ=I
I=∫40(sec2θ−1)tan2θdθ
=∫40sec2θtan2θdθ−∫40tan2θdθ
=∫40sec2θtan2θdθ−∫40(sec2θ−1)dθ
1) for ∫40sec2θtan2θdθ→tanθ=μ
sec2θdθ=dμ
∴∫tan40μ2.du
=[μ33]tan40=tan343
2) ∫40(sec2θ−1)dθ=∫40sec2θdθ−∫40dθ
=[tanθ]40−[θ]40
=tan4−4
∴I=tan343−tan4+4