wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Solve: π201sin2x1+sin2xdx

Open in App
Solution

π20(cos2sinxcosx+sinx)dx
=π20cosxsinxcosx+sinxdx
=π20(cosxsinxcosx+sinx)dx(i)+π2π4(sinxcosx)(cosx+sinx)dx(ii)
(i) and (ii)
cosx+sinx=n
dndx=cosxsinx
dn=(cosxsinx)dx
=π40dnnπ2π4dnn
=[ln(n)]π40[ln(n)]π2π4
=[ln(cosx+sinx)]π40[ln(cosx+sinx)]π2π4
=ln(2)4ln(1)ln(1+ln(2)
=2ln2=ln2(As)

1047850_1177632_ans_addf487db6634dcba2fd023ad4a6f918.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon