1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration as Antiderivative
Solve: π0∫x ...
Question
Solve:
π
∫
0
x
sin
x
d
x
1
+
cos
2
x
=
A
π
2
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−
π
2
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−
π
2
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
−
π
2
4
∫
π
0
x
s
i
n
x
d
x
1
+
c
o
s
2
x
=
I
.
.
.
(
1
)
⇒
∫
π
0
(
π
−
x
)
s
i
n
(
π
−
x
)
d
x
1
+
c
o
s
2
(
π
−
x
)
⇒
∫
π
0
(
π
−
x
)
s
i
n
x
1
+
c
o
s
2
x
d
x
=
I
.
.
.
(
2
)
adding (1) & (2)
2
I
=
∫
−
1
1
π
s
i
n
x
d
x
1
+
c
o
s
2
x
cosx = t
dt = -sinx dx
∴
2
I
=
∫
1
−
1
π
.
d
t
1
+
t
2
2
I
=
−
π
[
t
a
n
−
1
t
]
−
1
+
1
I
=
−
π
2
[
π
−
π
4
−
π
4
]
I
=
−
π
2
4
Suggest Corrections
0
Similar questions
Q.
If
y
=
√
1
−
cos
2
x
1
+
cos
2
x
,
x
∈
(
0
,
π
2
)
∪
(
π
2
,
π
)
, then
d
y
d
x
is equal to