The correct option is
B 0sin−1(1−x)−2sin−1x=π2⇒−2sin−1x=π2−sin−1(1−x)
⇒−2sin−1x=cos−1(1−x).....(1)
Let
sin−1x=θ⇒sinθ=x⇒cosθ=√1−x2
∴θ=cos−1(√1−x2)
∴sin−1x=cos−1(√1−x2)
Therefore, from equation (1), we have
−2cos−1(√1−x2)=cos−1(1−x)
Put x=siny
−2cos−1(√1−sin2y)=cos−1(1−siny)
⇒−2cos−1(cosy)=cos−1(1−siny)
⇒−2y=cos−1(1−siny)
⇒1−siny=cos(−2y)=cos2y=1−2sin2y
⇒2sin2y−siny=0
⇒siny(2siny−1)=0
⇒siny=0or12
∴x=0orx=12
But, when x=12, it can be observed that :
L.H.S.=sin−1(1−12)−2sin−112
=sin−1(12)−2sin−112
=−sin−112
=−π6≠π2≠R.H.S.
∴x=12 is not the solution of the given equation.
Thus , x=0.
Hence, the correct answer is C.