wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve sinx+cosx=1+sinx.cosx, then 2nπ±π4
If true then enter 1 and if false then enter 0

Open in App
Solution

sinxcosx=1sinx.cosx
Let sinx+cosx=tsin2x+cos2x+2sinx.cosx=t2sinx.coss=t212
Now Put sinx+cosx=t and sinx.cosx=t212 in (i), we get t=1+t212t22t+1=0t=1sinxcosx=1t=sinx+cosxsinx+cosx=1
divide both sides of equation (ii) by 2, we get
sinx12+cosx.12=12cos(xπ4)=cosπ4xπ4xπ4=2nπ±π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon