∵sinxcosx=1sinx.cosx
Let sinx+cosx=t⇒sin2x+cos2x+2sinx.cosx=t2⇒sinx.coss=t2−12
Now Put sinx+cosx=t and sinx.cosx=t2−12 in (i), we get t=1+t2−12⇒t22t+1=0⇒t=1⇒sinxcosx=1∵t=sinx+cosx⇒sinx+cosx=1
divide both sides of equation (ii) by √2, we get
⇒sinx1√2+cosx.1√2=1√2⇒cos(x−π4)=cosπ4⇒x−π4⇒x−π4=2nπ±π4