Solve sin5x.cos3x=sin6x.cos2x. then nπ2,n∈I or nπ±π6,n∈I If true then enter 1 and if false then enter 0
Open in App
Solution
∵sin5x.cos3x=sin6x.cos2x ⇒2sin5x.cos3x=2sin6x.cos2x ⇒sin8x+sin2x=sin8x+sin4x ⇒sin4x−sin2x=0 ⇒2sin2x.cos2x−sin2x=0 ⇒sin2x(2cos2x−1)=0 ⇒sin2x=0 or 2cos2x−1=0 ⇒2x=nπ∈I or cos2x=12 ⇒x=nπ2,n∈I ⇒x=nπ±π6,nπI ∴ Solution of given equation is nπ2,n∈I or nπ±π6,n∈I