wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : tanθ+tan[θ+π3]+tan[θ+2π3]=3.

A
θ=(4n+1)π12;nI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
θ=(4n+1)π3;nI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
θ=(4n+1)π6;nI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A θ=(4n+1)π12;nI
tanθ+tan(θ+π3)+tan(θ+2π3)=3

tanθ+tanθ+tanπ31tanθ.tanπ3+tanθ+tan2π31tanθ.tan2π3=3

tanθ+tanθ+313tanθ+tanθ31tanθ(3)=3

tanθ+tanθ+313tanθ+tanθ31+3tanθ=3

tanθ+(tanθ+3)(1+3tanθ)+(tanθ3)(13tanθ)(13tanθ)(1+3tanθ)=3

tanθ+tanθ+3tan2θ+3+3tanθ+tanθ3tan2θ3+3tanθ12(3tanθ)2=3

tanθ+8tanθ143tan2θ=3

tanθ(13tan2θ)+8tanθ=3(13tan2θ)

tanθ3tan3θ+8tanθ=39tan2θ

9tanθ3tan3θ=39tan2θ

9tanθ+9tan2θ=3+3tan3θ

9tanθ(1+tanθ)=3(1+tan3θ)

9tanθ(1+tanθ)=3(1+tanθ)(1+tan2θtanθ)

(1+tanθ)(1+tan2θtanθ3tanθ)=0

tanθ=1 and 1+tan2θ4tanθ=0

=tan(45o) tan2θ4tanθ+1=0

tanθ=tan(π4)tanθ=+4±1642

θ=nπ+(π4) tanθ=4±232

tanθ=2±3

tanθ=tan(π12)=2±3

=tan(5π12)=2+3

θ=nπ+(5π12)=nπ+π12

Combine all the solution we get

θ=(4n+1)π12;nI

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon