The correct option is
A θ=(4n+1)π12;n∈Itanθ+tan(θ+π3)+tan(θ+2π3)=3
⇒tanθ+tanθ+tanπ31−tanθ.tanπ3+tanθ+tan2π31−tanθ.tan2π3=3
⇒tanθ+tanθ+√31−√3tanθ+tanθ−√31−tanθ(−√3)=3
⇒tanθ+tanθ+√31−√3tanθ+tanθ−√31+√3tanθ=3
⇒tanθ+(tanθ+√3)(1+√3tanθ)+(tanθ−√3)(1−√3tanθ)(1−√3tanθ)(1+√3tanθ)=3
⇒tanθ+tanθ+√3tan2θ+√3+3tanθ+tanθ−√3tan2θ−√3+3tanθ12−(√3tanθ)2=3
⇒tanθ+8tanθ14−3tan2θ=3
⇒tanθ(1−3tan2θ)+8tanθ=3(1−3tan2θ)
⇒tanθ−3tan3θ+8tanθ=3−9tan2θ
⇒9tanθ−3tan3θ=3−9tan2θ
⇒9tanθ+9tan2θ=3+3tan3θ
⇒9tanθ(1+tanθ)=3(1+tan3θ)
⇒9tanθ(1+tanθ)=3(1+tanθ)(1+tan2θ−tanθ)
⇒(1+tanθ)(1+tan2θ−tanθ−3tanθ)=0
⇒tanθ=−1 and 1+tan2θ−4tanθ=0
=tan(−45o) tan2θ−4tanθ+1=0
tanθ=tan(−π4)tanθ=+4±√16−42
θ=nπ+(−π4) tanθ=4±2√32
tanθ=2±√3
tanθ=tan(π12)=2±√3
=tan(5π12)=2+√3
⇒θ=nπ+(5π12)=nπ+π12
Combine all the solution we get
θ=(4n+1)π12;n∈I