1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Special Integrals - 1
Solve x→ 0l...
Question
Solve
l
i
m
x
→
0
sin
−
1
x
−
tan
−
1
x
x
3
equal
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
/
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−
3
/
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
1
/
2
l
i
m
x
→
0
sin
−
1
x
−
tan
−
1
x
x
3
Applying L'Hopital here,limit becomes
l
i
m
x
→
0
1
1
−
√
x
2
−
1
1
+
x
2
3
x
2
=
l
i
m
x
→
0
(
1
+
x
2
)
−
√
1
−
x
2
3
x
2
(
1
+
x
2
)
√
1
−
x
2
Multiply numerator and denominator by
(
1
+
x
2
)
+
√
1
−
x
2
and we get
=
l
i
m
x
→
0
(
1
+
x
2
)
2
−
(
1
−
x
2
)
3
x
2
(
(
1
+
x
2
)
+
√
1
−
x
2
)
(
1
+
x
2
)
√
1
−
x
2
=
l
i
m
x
→
0
3
+
x
2
3
(
(
1
+
x
2
)
+
√
1
−
x
2
)
(
1
+
x
2
)
√
1
−
x
2
Putting in
x
=
0
into the above equation, We get
1
2
.
Suggest Corrections
0
Similar questions
Q.
Find a
l
i
m
x
→
0
sin
−
1
x
−
tan
−
1
x
x
3
=
1
a
.
Q.
Solve for x:
tan
−
1
(
x
−
1
x
−
2
)
+
tan
−
1
(
x
+
1
x
+
2
)
=
π
4
.
Q.
Solve for x the following :
(a)
t
a
n
−
1
x
−
1
x
−
2
+
t
a
n
−
1
x
+
1
x
+
2
=
π
4
(b)
t
a
n
−
1
x
−
1
x
+
1
+
t
a
n
−
1
2
x
−
1
2
x
+
1
=
t
a
n
−
1
23
36
Q.
Solve the following equations for
x
:
(i)
(ii)
(iii) tan
−1
(
x
−1) + tan
−1
x
tan
−1
(
x
+ 1) = tan
−1
3
x
(iv)
tan
−1
1
-
x
1
+
x
-
1
2
tan
−1
x
= 0, where
x
> 0
(v) cot
−1
x
− cot
−1
(
x
+ 2) =
π
12
,
x
> 0
(vi) tan
−1
(
x
+ 2) + tan
−1
(
x
− 2) = tan
−1
8
79
,
x
> 0
(vii)
tan
-
1
x
2
+
tan
-
1
x
3
=
π
4
,
0
<
x
<
6
(viii)
(ix)
Q.
Solve the following equations for
x
:
(i) tan
−1
2x + tan
−1
3x = nπ +
3
π
4
(ii) tan
−1
(x + 1) + tan
−1
(x − 1) = tan
−1
8
31
(iii) tan
−1
(
x
−1) + tan
−1
x
tan
−1
(
x
+ 1) = tan
−1
3
x
(iv)
tan
−1
1
-
x
1
+
x
-
1
2
tan
−1
x
= 0, where
x
> 0
(v) cot
−1
x
− cot
−1
(
x
+ 2) =
π
12
,
x
> 0
(vi) tan
−1
(
x
+ 2) + tan
−1
(
x
− 2) = tan
−1
8
79
,
x
> 0
(vii)
tan
-
1
x
2
+
tan
-
1
x
3
=
π
4
,
0
<
x
<
6
(viii)
tan
-
1
x
-
2
x
-
4
+
tan
-
1
x
+
2
x
+
4
=
π
4
(ix)
tan
-
1
2
+
x
+
tan
-
1
2
-
x
=
tan
-
1
2
3
,
where
x
<
-
3
or
,
x
>
3
(x)
tan
-
1
x
-
2
x
-
1
+
tan
-
1
x
+
2
x
+
1
=
π
4
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Special Integrals - 1
MATHEMATICS
Watch in App
Explore more
Special Integrals - 1
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app