Solve limx→π2acotx−acosxcotx−cosxa>0
Find the imaginary part of the complex number (1+i)(1−i)
Find the real part of the complex number (1−i)(1+i)
Let f:[0,√3]→[0,π3+loge2] defined f(x)=loge √x2+1+tan−1x then f(x) is