Given equation: x2−5x−10=0
Comparing x2−5x−10=0 with ax2+bx+c=0
We have a=1,b=−5 and c=−10
We know that, for the equation ax2+bx+c=0
x=−b±√b2−4ac2a are roots of the equation.
⇒x=−(−5)±√(−5)2−4×1×(−10)2×1
⇒x=5±√25+402
⇒x=5±√652=5±8.062
⇒x=13.062 or x=−3.062
∴x=6.53 or x=−1.53.