Given equation: 3x2−x−7=0
Comparing 3x2−x−7=0 with ax2+bx+c=0
We have a=3,b=−1 and c=−7
We know that, for the equation ax2+bx+c=0
x=−b±√b2−4ac2a are roots of the equation.
⇒x=−(−1)±√(−1)2−4×3×(−7)2×3
⇒x=1±√1+846
⇒x=1±√856=1±9.226
⇒x=10.226 or x=−8.226
∴x=1.70 or x=−1.37.