Given: 1−2x7−2−3x8=32+x4
⇒1−2x7−2−3x8−x4=32
⇒(1−2x)8−(2−3x)7−14x56=32
⇒8−16x−14+21x−14x56=32
⇒−9x−656=32
⇒2(−9x−6)=3(56)
⇒−18x−12=168
⇒−18x=168+12
⇒−18x=180
⇒x=180−18
⇒x=−10
To check 1−2x7−2−3x8=32+x4 for x=−10
L.H.S=1−2x7−2−3x8
=1−2(−10)7−2−3(−10)8
=217−328
=3−4=−1
R.H.S=32+x4
=32+−104
=32−52
=3−52
=−22
=−1
∴L.H.S=R.H.S
Hence, the given equation is verified for x=−10.