Given:[(2x+3)+(x+5)]2+[(2x+3)–(x+5)]2=
10x2+92
[3x+8]2+[x–2]2=10x2+92
Using the formulae
(a+b)2=a2+b2+2ab
(a−b)2=a2+b2−2ab
9x2+48x+64+x2–4x+4=10x2+92
9x2–10x2+x2+48x–4x=92–64–4
44x=24
x=2444
=611
To check: [(2x+3)+(x+5)]2+[(2x+3)–(x+5)]2
=10x2+92 for x=611
L.H.S=[(2x+3)+(x+5)]2+[(2x+3)–(x+5)]2
=[2(611)+3+(611)+5]2+[2(611)+3–(611)–5]2
=[(1211)+3+(611)+5]2+[(1211)+3–(611)–5]2
=[(12+3311)+(6+5511)]2+[(12+3311)–(6+5511)]2
=[(4511)+(6111)]2+[(4511)–(6111)]2
=(10611)2+(−1611)2
=11236121+256121
=11492121
R.H.S=10x2+92
=10(611)2+92
=(360121)+92
=360+11132121
=11492121
∴L.H.S = R.H.S
Hence, the given equation is verified for x=611.