Solve each of the following equations and also verify your solution :
(3x+1)16+(2x−3)7=(x+3)8+(3x−1)14
(3x+1)16+(2x−3)7=(x+3)8+(3x−1)14=7(3x+1)+16(2x−3)=14(x+3)+8(3x−1)112
(L.C.M. of 16, 7, 8, 14 = 112)
=21x+7+32x−48=14x+42+24x−8=21x+32x−14x−24x=42−8−7+48
(By transposition)
⇒53x−38x=90−15⇒15x=75⇒x=7515∴x=5
Verification :
L.H.S.=(3x+1)16+(2x−3)7=3×5+116+2×5−37=1616+77=1+1=2R.H.S.=x+38+3x−111=5+28+3×5−114=88+1414=1+1=2∴L.H.S=R.H.S.