Solve each of the following equations and also verify your solution :
(x + 2)(x+3)+(x-3)(x-2)-2x(x+1)=0
(x+2)(x+3)+(x−3)(x−2)−2x(x+1)=0⇒[x2+(2+3)x+2×3]+[x2+(−3−2)x+(−3)(−2)]−2x2−2x=0⇒x2+5x+6+x2−5x+6−2x2−2x=0⇒x2+x2−2x2+5x−5x−2x+6+6=0=−2x+12=0
Substracting 12 from both sides,
−2x+12−12=0−12⇒−2x=−12
Dividing by - 2,
−2x−2=−12−2⇒x=6∴x=6
Verification :
L.H.S.=(x+2)(x+3)+(x−3)(x−2)−2x(x+1)=(6+2)(6+3)+(6−3)(6−2)−2×6(6+1)=8×9+3×4−12×7=72+12−84=84−84=0=R.H.S.