(i) y + 9 = 13
We try several values of y until we get the L.H.S. equal to the R.H.S.
y |
L.H.S. |
R.H.S. |
Is LHS =RHS ? |
1 |
1 + 9 = 10 |
13 |
No |
2 |
2 + 9 = 11 |
13 |
No |
3 |
3 + 9 = 12 |
13 |
No |
4 |
4 + 9 = 13 |
13 |
Yes |
∴ y = 4
(ii) x − 7= 10
We try several values of x until we get the L.H.S. equal to the R.H.S.
x |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
10 |
10 − 7 = 3 |
10 |
No |
11 |
11 − 7 = 4 |
10 |
No |
12 |
12 − 7 = 5 |
10 |
No |
13 |
13 − 7 = 6 |
10 |
No |
14 |
14 − 7 = 7 |
10 |
No |
15 |
15 − 7 = 8 |
10 |
No |
16 |
16 − 7 = 9 |
10 |
No |
17 |
17 − 7 = 10 |
10 |
Yes |
∴ x = 17
(iii) 4x = 28
We try several values of x until we get the L.H.S. equal to the R.H.S.
x |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
1 |
4 1 = 4 |
28 |
No |
2 |
4 2 = 8 |
28 |
No |
3 |
4 3 = 12 |
28 |
No |
4 |
4 4 = 16 |
28 |
No |
5 |
4 5 = 20 |
28 |
No |
6 |
4 6 = 24 |
28 |
No |
7 |
4 7 = 28 |
28 |
Yes |
∴ x = 7
(iv) 3y = 36
We try several values of x until we get the L.H.S. equal to the R.H.S.
y |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
6 |
3 6 = 18 |
36 |
No |
7 |
3 7 = 21 |
36 |
No |
8 |
3 8 = 24 |
36 |
No |
9 |
3 9 = 27 |
36 |
No |
10 |
3 10 = 30 |
36 |
No |
11 |
3 11 = 33 |
36 |
No |
12 |
3 12 = 36 |
36 |
Yes |
∴ y = 12
(v) 11 + x = 19
We try several values of x until we get the L.H.S. equal to the R.H.S.
x |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
1 |
11 + 1 = 12 |
19 |
No |
2 |
11 + 2 = 13 |
19 |
No |
3 |
11 + 3 = 14 |
19 |
No |
4 |
11 + 4 = 15 |
19 |
No |
5 |
11 + 5 = 16 |
19 |
No |
6 |
11 + 6 = 17 |
19 |
No |
7 |
11 + 7 = 18 |
19 |
No |
8 |
11 + 8 = 19 |
19 |
Yes |
∴ x = 8
(vi)
Since R.H.S. is an natural number so L.H.S. must also be a natural number. Thus, x has to be a multiple of 3.
x |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
3 |
|
4 |
No |
6 |
|
4 |
No |
9 |
|
4 |
No |
12 |
|
4 |
Yes |
∴ x = 12
(vii) 2x − 3 = 9
We try several values of x until we get the L.H.S. equal to the R.H.S.
x |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
1 |
2 1 − 3 = −1 |
9 |
No |
2 |
2 2 − 3 = 1 |
9 |
No |
3 |
2 3 − 3 = 3 |
9 |
No |
4 |
2 4 − 3 = 5 |
9 |
No |
5 |
2 5 − 3 = 7 |
9 |
No |
6 |
2 6 − 3 = 9 |
9 |
Yes |
∴ x = 6
(viii)
Since, R.H.S. is a natural number so L.H.S. must be a natural number Thus, we will try values if x which are multiples of 'x'
x |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
2 |
2/2 + 7 = 8 |
11 |
No |
4 |
4/2 + 7 = 9 |
11 |
No |
6 |
6/2 + 7 = 10 |
11 |
No |
8 |
8/2 + 7 = 11 |
11 |
Yes |
∴ x = 8
(ix) 2y + 4 = 3y
We try several values of y until we get the L.H.S. equal to the R.H.S.
y |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
1 |
2 1 + 4 = 6 |
3 1 = 3 |
No |
2 |
2 2 + 4 = 8 |
3 2 = 6 |
No |
3 |
2 3 + 4 = 10 |
3 3 = 9 |
No |
4 |
2 4 + 4 = 12 |
3 4 = 12 |
Yes |
∴ y = 4
(x) z − 3 = 2z − 5
We try several values of z till we get the L.H.S. equal to the R.H.S.
z |
L.H.S. |
R.H.S. |
Is L.H.S. = R.H.S.? |
1 |
1 − 3 = −2 |
2 1 − 5 = −3 |
No |
2 |
2 − 3 = −1 |
2 2 − 5 = −1 |
Yes |
∴ z = 2