Given: 4x+6x+13=0
⇒4x2+6+13xx=0
⇒4x2+13x+6=0
Compare 4x2+13x+6=0 with the equation ax2+bx+c=0
a=4,b=13 and c=6
We know that, for the equation ax2+bx+c=0
x=−b±√b2−4ac2a are root of the equation
⇒x=−13±√(13)2−4(4)(6)2×4
⇒x=−13±√169−968
⇒x=−13±√738
⇒x=−13±8.548
⇒x=−13+8.548 and x=−13−8.548
∴x=−0.56 and −2.69.