Compare x2−5x−10=0 with ax2+bx+c=0
a=1,b=−5 and c=−10
We know that, for ax2+bx+c=0
x=−b±√b2−4ac2a are roots of the equation.
⇒x=−(−5)±√(−5)2−4(1)(−10)2(1)
⇒x=5±√25+402
⇒x=5±√652
⇒x=5±8.062
⇒x=5+8.062 and x=5−8.062
⇒x=13.062 and x=−3.062
∴x=6.53 and −1.53.