Compare 3x2−12x−1=0 with ax2+bx+c=0
a=3,b=−12 and c=−1
We know that, for equation ax2+bx+c=0
x=−b±√b2−4ac2a are roots of the equation.
⇒x=−(−12)±√(−12)2−4(3)(−1)2(3)
⇒x=12±√144+126
⇒x=12±√1566
⇒x=12±12.4896
⇒x=12+12.4896 and x=12−12.4896
∴x=4.082 and −0.082.