Compare x2−16x+6=0 with ax2+bx+c=0
a=1,b=−16 and c=6
We know that, for equation ax2+bx+c=0
⇒x=−b±√b2−4ac2a are roots of the equation.
⇒x=−(−16)±√(−16)2−4(1)(6)2(1)
⇒x=16±√256−242
⇒x=16±√2322
⇒x=16±15.2312
⇒x=16+15.2312 and x=16−15.2312
∴x=15.616 and 0.384.