1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Equation of Normal at a Point (x,y) in Terms of f'(x)
Solve each of...
Question
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
d
y
d
x
+
y
cot
x
=
2
cos
x
,
y
π
2
=
0
(xii)
d
y
=
cos
x
2
-
y
cos
e
c
x
d
x
(xiii)
tan
x
d
y
d
x
=
2
x
tan
x
+
x
2
-
y
;
tan
x
≠
0
given that y = 0 when
x
=
π
2
.
Open in App
Solution
i
We
have
,
y
'
+
y
=
e
x
⇒
d
y
d
x
+
y
=
e
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
1
and
Q
=
e
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
1
d
x
=
e
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
e
x
,
we
get
e
x
d
y
d
x
+
y
=
e
x
e
x
⇒
e
x
d
y
d
x
+
e
x
y
=
e
2
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
e
x
=
∫
e
2
x
d
x
+
C
⇒
y
e
x
=
e
2
x
2
+
C
.
.
.
.
.
2
Now
,
y
0
=
1
2
∴
1
2
e
0
=
e
0
2
+
C
⇒
C
=
0
Putting
the
value
of
C
in
2
,
we
get
y
e
x
=
e
2
x
2
⇒
e
x
=
e
x
2
Hence
,
y
=
e
x
2
is
the
required
solution
.
ii
We
have
,
x
d
y
d
x
-
y
=
log
x
⇒
d
y
d
x
-
y
x
=
log
x
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
-
1
x
and
Q
=
log
x
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
-
∫
1
x
d
x
=
e
-
log
x
=
1
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
1
x
,
we
get
1
x
d
y
d
x
-
1
x
y
=
1
x
×
log
x
x
⇒
1
x
d
y
d
x
-
1
x
2
y
=
log
x
x
2
Integrating
both
sides
with
respect
to
x
,
we
get
y
1
x
=
∫
1
x
2
II
×
log
x
I
d
x
+
C
⇒
y
x
=
log
x
∫
1
x
2
d
x
-
∫
d
d
x
log
x
∫
1
x
2
d
x
d
x
+
C
⇒
y
x
=
-
log
x
x
+
∫
1
x
2
d
x
+
C
⇒
y
x
=
-
log
x
x
-
1
x
+
C
⇒
y
=
-
log
x
-
1
+
C
x
.
.
.
.
.
2
Now
,
y
1
=
0
∴
0
=
-
0
-
1
+
C
1
⇒
C
=
1
Putting
the
value
of
C
in
2
,
we
get
y
=
-
log
x
-
1
+
x
⇒
y
=
x
-
1
-
log
x
Hence
,
y
=
x
-
1
-
log
x
is
the
required
solution
.
iii
We
have
,
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
2
and
Q
=
e
-
2
x
sin
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
2
d
x
=
e
2
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
e
2
x
,
we
get
e
2
x
d
y
d
x
+
2
y
=
e
2
x
e
-
2
x
sin
x
⇒
e
2
x
d
y
d
x
+
2
y
=
sin
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
e
2
x
=
∫
sin
x
d
x
+
C
⇒
y
e
2
x
=
-
cos
x
+
C
.
.
.
.
.
2
Now
,
y
0
=
0
∴
0
×
e
0
=
-
cos
0
+
C
⇒
C
=
1
Putting
the
value
of
C
in
2
,
we
get
y
e
2
x
=
-
cos
x
+
1
⇒
y
e
2
x
=
1
-
cos
x
Hence
,
y
e
2
x
=
1
-
cos
x
is
the
required
solution
.
iv
We
have
,
x
d
y
d
x
-
y
=
x
+
1
e
-
x
⇒
d
y
d
x
-
1
x
y
=
x
+
1
x
e
-
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
-
1
x
and
Q
=
x
+
1
x
e
-
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
-
∫
1
x
d
x
=
e
-
log
x
=
1
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
1
x
,
we
get
1
x
d
y
d
x
-
1
x
y
=
1
x
x
+
1
x
e
-
x
⇒
1
x
d
y
d
x
-
1
x
y
=
x
+
1
x
2
e
-
x
Integrating
both
sides
with
respect
to
x
,
we
get
1
x
y
=
∫
1
x
+
1
x
2
e
-
x
d
x
+
C
Putting
1
x
e
-
x
=
t
⇒
-
1
x
e
-
x
-
1
x
2
e
-
x
d
x
=
d
t
⇒
1
x
+
1
x
2
e
-
x
d
x
=
-
d
t
∴
1
x
y
=
∫
-
d
t
+
C
⇒
y
x
=
-
t
+
C
⇒
y
x
=
-
e
-
x
x
+
C
⇒
y
=
-
e
-
x
+
C
x
.
.
.
.
.
2
Now
,
y
1
=
0
∴
0
=
-
e
-
1
+
C
⇒
C
=
e
-
1
Putting
the
value
of
C
in
2
,
we
get
y
=
-
e
-
x
+
x
e
-
1
⇒
y
=
x
e
-
1
-
e
-
x
Hence
,
y
=
x
e
-
1
-
e
-
x
is
the
required
solution
.
v
We
have
,
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
y
=
0
⇒
x
-
e
-
tan
-
1
y
d
y
d
x
=
-
1
+
y
2
⇒
1
+
y
2
d
x
d
y
=
-
x
-
e
-
tan
-
1
y
⇒
d
x
d
y
+
x
1
+
y
2
=
e
-
tan
-
1
y
1
+
y
2
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
x
d
y
+
P
x
=
Q
where
P
=
1
1
+
y
2
and
Q
=
e
-
tan
-
1
y
1
+
y
2
∴
I
.
F
.
=
e
∫
P
d
y
=
e
∫
1
1
+
y
2
d
y
=
e
tan
-
1
y
Multiplying
both
sides
of
1
by
I
.
F
.
=
e
tan
-
1
y
,
we
get
e
tan
-
1
y
d
x
d
y
+
x
1
+
y
2
=
e
tan
-
1
y
e
-
tan
-
1
y
1
+
y
2
⇒
e
tan
-
1
y
d
x
d
y
+
x
1
+
y
2
=
1
1
+
y
2
Integrating
both
sides
with
respect
to
y
,
we
get
e
tan
-
1
y
x
=
∫
1
1
+
y
2
d
y
+
C
⇒
x
e
tan
-
1
y
=
tan
-
1
y
+
C
.
.
.
.
.
2
Now
,
y
0
=
0
∴
0
×
e
0
=
0
+
C
⇒
C
=
0
Putting
the
value
of
C
in
2
,
we
get
x
e
tan
-
1
y
=
tan
-
1
y
+
0
⇒
x
e
tan
-
1
y
=
tan
-
1
y
Hence
,
x
e
tan
-
1
y
=
tan
-
1
y
is
the
required
solution
.
vi
We
have
,
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
tan
x
and
Q
=
x
2
cot
x
+
2
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
tan
x
d
x
=
e
log
sec
x
=
sec
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
sec
x
,
we
get
sec
x
d
y
d
x
+
y
tan
x
=
sec
x
x
2
tan
x
+
2
x
⇒
sec
x
d
y
d
x
+
y
tan
x
=
x
2
tan
x
sec
x
+
2
x
sec
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
sec
x
=
∫
x
2
tan
x
sec
x
d
x
+
2
∫
x
II
sec
x
I
d
x
+
C
⇒
y
sec
x
=
∫
x
2
tan
x
sec
x
d
x
+
2
s
e
c
x
∫
x
d
x
-
2
∫
d
d
x
s
e
c
x
∫
x
d
x
d
x
+
C
⇒
y
sec
x
=
∫
x
2
tan
x
sec
x
d
x
+
x
2
sec
x
-
∫
x
2
tan
x
sec
x
d
x
+
C
⇒
y
sec
x
=
x
2
sec
x
+
C
⇒
y
=
x
2
+
C
cos
x
.
.
.
.
.
2
Now
,
y
0
=
1
∴
1
=
0
+
C
cos
0
⇒
C
=
1
Putting
the
value
of
C
in
2
,
we
get
y
=
x
2
+
cos
x
Hence
,
y
=
x
2
+
cos
x
is
the
required
solution
.
vii
We
have
,
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
⇒
d
y
d
x
+
1
x
y
=
cos
x
+
sin
x
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
tan
x
and
Q
=
x
2
cot
x
+
2
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
1
x
d
x
=
e
log
x
=
x
Multiplying
both
sides
of
(
1
)
by
I
.
F
.
=
x
,
we
get
x
d
y
d
x
+
1
x
y
=
x
cos
x
+
sin
x
x
⇒
x
d
y
d
x
+
1
x
y
=
x
cos
x
+
sin
x
Integrating
both
sides
with
respect
to
x
,
we
get
x
y
=
∫
x
cos
x
d
x
+
∫
sin
x
d
x
+
C
⇒
x
y
=
x
sin
x
-
∫
1
sin
x
d
x
-
cos
x
+
C
⇒
x
y
=
x
sin
x
+
cos
x
-
cos
x
+
C
⇒
x
y
=
x
sin
x
+
C
.
.
.
.
.
2
Now
,
y
π
2
=
1
∴
1
×
π
2
=
π
2
sin
π
2
+
C
⇒
C
=
0
Putting
the
value
of
C
in
2
,
we
get
x
y
=
x
sin
x
⇒
y
=
sin
x
Hence
,
y
=
sin
x
is
the
required
solution
.
viii
We
have
,
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
cot
x
and
Q
=
4
x
cosec
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
cot
x
d
x
=
e
log
sin
x
=
sin
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
sin
x
,
we
get
sin
x
d
y
d
x
+
y
cot
x
=
sin
x
4
x
cosec
x
⇒
sin
x
d
y
d
x
+
y
cot
x
=
4
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
sin
x
=
4
∫
x
d
x
+
C
⇒
y
sin
x
=
2
x
2
+
C
.
.
.
.
.
2
Now
,
y
π
2
=
0
∴
0
×
sin
π
2
=
2
π
2
2
+
C
⇒
C
=
-
π
2
2
Putting
the
value
of
C
in
2
,
we
get
y
sin
x
=
2
x
2
-
π
2
2
Hence
,
y
sin
x
=
2
x
2
-
π
2
2
is
the
required
solution
.
ix
We
have
,
d
y
d
x
+
2
y
tan
x
=
sin
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
2
tan
x
and
Q
=
sin
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
2
∫
tan
x
d
x
=
e
2
log
sec
x
=
sec
2
x
Multiplying
both
sides
of
(
1
)
by
I
.
F
.
=
sec
2
x
,
we
get
sec
2
x
d
y
d
x
+
2
y
tan
x
=
sec
2
x
×
sin
x
⇒
sec
2
x
d
y
d
x
+
2
y
tan
x
=
tan
x
sec
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
sec
2
x
=
∫
tan
x
sec
x
d
x
+
C
⇒
y
sec
2
x
=
sec
x
+
C
.
.
.
.
.
2
Now
,
y
π
3
=
0
∴
0
sec
π
3
2
=
sec
π
3
+
C
⇒
C
=
-
2
Putting
the
value
of
C
in
2
,
we
get
y
sec
2
x
=
sec
x
-
2
⇒
y
=
cos
x
-
2
cos
2
x
Hence
,
y
=
cos
x
-
2
cos
2
x
is
the
required
solution
.
x
We
have
,
d
y
d
x
-
3
y
cot
x
=
sin
2
x
.
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
-
3
cot
x
and
Q
=
sin
2
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
-
3
∫
cot
x
d
x
=
e
-
3
log
sin
x
=
cosec
3
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
cosec
3
x
,
we
get
cosec
3
x
d
y
d
x
-
3
y
cot
x
=
sin
2
x
cosec
3
x
⇒
cosec
3
x
d
y
d
x
-
3
y
cot
x
=
2
cot
x
cosec
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
cosec
3
x
=
2
∫
cot
x
cosec
x
d
x
+
C
⇒
y
cosec
3
x
=
-
2
cosec
x
+
C
⇒
y
=
-
2
sin
2
x
+
C
sin
3
x
.
.
.
.
.
2
Now
,
y
π
2
=
2
∴
2
=
-
2
sin
2
π
2
+
C
sin
3
π
2
⇒
C
=
4
Putting
the
value
of
C
in
2
,
we
get
y
=
-
2
sin
2
x
+
4
sin
3
x
⇒
y
=
4
sin
3
x
-
2
sin
2
x
Hence
,
y
=
4
sin
3
x
-
2
sin
2
x
is
the
required
solution
.
xi
d
y
d
x
+
y
cot
x
=
2
cos
x
,
y
π
2
=
0
d
y
d
x
+
y
cot
x
=
2
cos
x
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
cot
x
and
Q
=
2
cos
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
cot
x
d
x
=
e
logsin
x
=
sin
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
sin
x
,
we
get
sin
x
d
y
d
x
+
y
cot
x
=
2
sin
x
cos
x
⇒
sin
x
d
y
d
x
+
y
cos
x
=
sin
2
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
sin
x
=
∫
sin
2
x
d
x
+
C
⇒
y
sin
x
=
-
cos
2
x
2
+
C
.
.
.
.
.
2
Now
,
y
π
2
=
0
∴
0
×
sin
π
2
=
-
cosπ
2
+
C
⇒
C
=
-
1
2
Putting
the
value
of
C
in
2
,
we
get
y
sin
x
=
-
cos
2
x
2
-
1
2
⇒
2
y
sin
x
=
-
1
+
cos
2
x
⇒
2
y
sin
x
=
-
2
cos
2
x
⇒
y
=
-
cot
x
cos
x
Hence
,
y
=
-
cot
x
cos
x
is
the
required
solution
.
x
i
i
d
y
=
cos
x
2
-
y
cos
e
c
x
d
x
⇒
d
y
d
x
=
2
cos
x
-
y
c
o
t
x
⇒
d
y
d
x
+
y
cot
x
=
2
cos
x
.
.
.
.
1
Clearly
,
it
is
a
linear
differential
equation
of
the
form
d
y
d
x
+
P
y
=
Q
where
P
=
cot
x
and
Q
=
2
cos
x
∴
I
.
F
.
=
e
∫
P
d
x
=
e
∫
cot
x
d
x
=
e
logsin
x
=
sin
x
Multiplying
both
sides
of
1
by
I
.
F
.
=
sin
x
,
we
get
sin
x
d
y
d
x
+
y
cot
x
=
2
sin
x
cos
x
⇒
sin
x
d
y
d
x
+
y
cos
x
=
sin
2
x
Integrating
both
sides
with
respect
to
x
,
we
get
y
sin
x
=
∫
sin
2
x
d
x
+
C
⇒
y
sin
x
=
-
cos
2
x
2
+
C
Hence
,
y
sin
x
=
-
cos
2
x
2
+
C
is
the
required
solution
.
(xiii)
tan
x
d
y
d
x
=
2
x
tan
x
+
x
2
-
y
⇒
d
y
d
x
+
1
tan
x
y
=
2
x
tan
x
+
x
2
tan
x
⇒
d
y
d
x
+
cot
x
y
=
2
x
+
x
2
cot
x
This is a linear differential equation of the form
d
y
d
x
+
P
y
=
Q
.
Integrating factor, I.F. =
e
∫
P
d
x
=
e
∫
cot
x
d
x
=
e
log
sin
x
=
sin
x
The solution of the given differential equation is given by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
×
sin
x
=
∫
2
x
+
x
2
cot
x
sin
x
d
x
+
C
⇒
y
sin
x
=
∫
2
x
sin
x
d
x
+
∫
x
2
cos
x
d
x
+
C
⇒
y
sin
x
=
∫
2
x
sin
x
d
x
+
x
2
∫
cos
x
d
x
-
∫
d
d
x
x
2
×
∫
cos
x
d
x
d
x
+
C
⇒
y
sin
x
=
∫
2
x
sin
x
d
x
+
x
2
sin
x
-
∫
2
x
sin
x
d
x
+
C
⇒
y
sin
x
=
x
2
sin
x
+
C
⇒
y
=
x
2
+
cosec
x
×
C
.
.
.
.
.
1
It is given that, y = 0 when
x
=
π
2
.
∴
0
=
π
2
2
+
cosec
π
2
×
C
⇒
C
=
-
π
2
4
Putting
C
=
-
π
2
4
in (1), we get
y
=
x
2
-
π
2
4
cosec
x
Hence,
y
=
x
2
-
π
2
4
cosec
x
is the required solution.
Suggest Corrections
0
Similar questions
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
(xii)
Q.
Solve each of the following initial value problems:
(i) (x
2
+ y
2
) dx = 2xy dy, y (1) = 0
(ii)
x
e
y
/
x
-
y
+
x
d
y
d
x
=
0
,
y
e
=
0
(iii)
d
y
d
x
-
y
x
+
cosec
y
x
=
0
,
y
1
=
0
(iv) (xy − y
2
) dx − x
2
dy = 0, y(1) = 1
(v)
d
y
d
x
=
y
x
+
2
y
x
2
x
+
y
,
y
1
=
2
(vi) (y
4
− 2x
3
y) dx + (x
4
− 2xy
3
) dy = 0, y (1) = 1
(vii) x (x
2
+ 3y
2
) dx + y (y
2
+ 3x
2
) dy = 0, y (1) = 1
(viii)
x
sin
2
y
x
-
y
d
x
+
x
d
y
=
0
,
y
1
=
π
4
(ix)
x
d
y
d
x
-
y
+
x
sin
y
x
=
0
,
y
2
=
x
Q.
(i)
d
y
d
x
=
y
tan
x
,
y
0
=
1
(ii)
2
x
d
y
d
x
=
5
y
,
y
1
=
1
(iii)
d
y
d
x
=
2
e
2
x
y
2
,
y
0
=
-
1
(iv)
cos
y
d
y
d
x
=
e
x
,
y
0
=
π
2
(v)
d
y
d
x
=
2
x
y
,
y
0
=
1
(vi)
d
y
d
x
=
1
+
x
2
+
y
2
+
x
2
y
2
,
y
0
=
1
(vii)
x
y
d
y
d
x
=
x
+
2
y
+
2
,
y
1
=
-
1
(viii)
d
y
d
x
=
1
+
x
+
y
2
+
x
y
2
when y = 0, x = 0 [NCERT EXEMPLAR]
(ix)
2
y
+
3
-
x
y
d
y
d
x
=
0
, y(1) = −2 [NCERT EXEMPLAR]
Q.
(i)
d
y
d
x
=
y
tan
x
,
y
0
=
1
(ii)
2
x
d
y
d
x
=
5
y
,
y
1
=
1
(iii)
d
y
d
x
=
2
e
2
x
y
2
,
y
0
=
-
1
(iv)
cos
y
d
y
d
x
=
e
x
,
y
0
=
π
2
(v)
d
y
d
x
=
2
x
y
,
y
0
=
1
(vi)
d
y
d
x
=
1
+
x
2
+
y
2
+
x
2
y
2
,
y
0
=
1
(vii)
x
y
d
y
d
x
=
x
+
2
y
+
2
,
y
1
=
-
1
(viii)
d
y
d
x
=
1
+
x
+
y
2
+
x
y
2
when y = 0, x = 0 [NCERT EXEMPLAR]
(ix)
2
y
+
3
-
x
y
d
y
d
x
=
0
, y(1) = −2 [NCERT EXEMPLAR]
(x)
e
x
tan
y
d
x
+
2
-
e
x
sec
2
y
d
y
=
0
,
y
0
=
π
4
[CBSE 2018]
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Explore more
Equation of Normal at a Point (x,y) in Terms of f'(x)
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app