x+yxy=2,x−yxy=6
⇒xxy+yxy=2,xxy−yxy=6
⇒1y+1x=2,1y−1x=6
Let 1x=a and 1y=b, then
⇒a+b=2...(1) and −a+b=6...(2)
Equations (1)+(2), gives
2b=8
⇒b=82=4
Substitute b=4 in equation (1), gives
a+4=2
⇒a=2−4=−2
But a=1x
⇒−2=1x
⇒x=−12
b=1y
⇒4=1y
⇒y=14
Thus, solution (x,y)=(−12,14)