Solve each of the following quadratic equations:
3(x+2)+3−x=10
Given;
3x+2+3−x=10⇒3x.32+13x=10⇒9.3x+13x=10⇒9.3x.3x+13x=10⇒9(3x)2+1=10.3x⇒9(3x)2−10.3x+1=0
Put z=3x
9z2−10z+1=0⇒9z2−9z−z+1=0⇒9z(z−1)−1(z−1)=0⇒(9z−1)(z−1)=0⇒9z−1=0 or z−1=0⇒z=19 or z=1
∴3x=19 or 3x=1⇒3x=3−2 or 3x=30⇒x=−2 or 0
Thus, the values of x are 0 or – 2.