Solve each of the following quadratic equations:
1x−2+2x−1=6x,x≠0,1,2
1x−2+2x−1=6x
1(x−1)+2(x−2)x2−x−2x+2=6x
x−1+2x−4x2−3x+2=6x
3x−5x2−3x+2=6x
3x2−5x=6x2−18x+12
6x2−3x2−18x+5x+12=0
3x2−13x+12=0
3x2−9x−4x+12=0
3x(x−3)−4(x−3)=0
(3x−4)(x−3)=0
x=3 or 43