Solve each of the following quadratic equations:
a(ax−1)+b(bx−1)=(a+b),x≠1a,1b
a(ax−1)+b(bx−1)=(a+b)
⇒a(ax−1)−b=a−b(bx−1)
⇒a−abx+b(ax−1)=abx−a−b(bx−1)
⇒(a+b−abx)(bx−1)=−(a+b−abx)(ax−1)
⇒(a+b−abx)(bx−1)+(a+b−abx)(ax−1)=0
⇒(a+b−abx)(bx−1+ax−1)=0
⇒(a+b−abx)(ax+bx−2)=0
⇒a+b−abx=0 or ax+bx−2=0
⇒abx=a+b or (a+b)x=2
⇒x=a+bab or x=2a+b