Solve each of the following quadratic equations:
xx+1+x+1x=2415,x≠0,−1
xx+1+x+1x=2415xx+1+x+1x=3415x2+(x+1)2x(x+1)=3415x2+x2+2x+1x2+x=3415
⇒15(2x2+2x+1)=34(x2+x)⇒30x2+30x+15=34x2+34x⇒34x2–30x2+34x–30x–15=0⇒4x2+4x–15=0⇒4x2+10x–6x–15=0⇒2x(2x+5)–3(2x+5)=0⇒(2x–3)(2x+5)=0
x=35 or −52