Solve each of the following quadratic equations:
(i) 1x−1−1x+5=67,x≠1,−5
(ii) 12x−3−1x−5=119,x≠32,5
(i) 1x−1−1x+5=67
(x+5−x+1)(x−1)(x+5)=67
6(x−1)(x+5)=67
6×76=x2+5x−x−5
7=x2+4x−5
x2+4x−12=0
x2+(6−2)x−12=0
x2+6x−2x−12=0
x(x+6)−2(x+6)=0
(x+6)(x−2)=0
When
x+6=0⇒x=−6
and
x−2=0⇒x=2
x= 2 and -6
(ii) 12x−3−1x−5=119
x−5+2x−3(2x−3)(x−5)=109
⇒3x−82x2−10x−3x+15=109
⇒3x−82x2−13x+15=109
Cross multiply to get,
10(2x2−13x+15)=9(3x−8)
⇒20x2−130x+150=27x−72
⇒20x2−157x+222=0
Factorise and solve,
20x2−120x−37x+222=0⇒20x(x−6)−37(x−6)=0
⇒(x−6)(20x−37)=0
⇒x=6,3720
values of x are 6 and 3720