Solve each of the following quadratic equations:
(i) 1x+1+2x+2=5x+4,x≠−1,−2,−4
(ii) 1x+1+35x+1=5x+4,x≠−115,−4
(i) 1x+1+2x+2=5x+4
⇒x+2+2x+2(x+1)(x+2)=5x+4
⇒3x+4x2+3x+2=5x+4
⇒5x2+15x+10=3x2+16x+16
⇒2x2−x−6=0
⇒2x2−4x+3x−6=0
⇒2x(x−2)+3(x−2)=0
⇒(2x+3)(x−2)=0
⇒2x+3=0 or x−2=0
⇒x=−32 or x=2
(ii) 1x+1+35x+1=5x+45x+1+3x+3(x+1)(5x+1)=5x+48x+45x2+6x+1=5x+4(8x+4)(x+4)=25x2+30x+58x2+36x+16=25x2+30x+517x2−6x−11=017x2−17x+11x−11=017x(x−1)+11(x−1)=0(17x+11)(x−1)=017x+11=0 or x−1=0x=1117 or 1