Solve each of the following quadratic equations:
(i) xx−1+x−1x=414,x≠0,1
(ii) x−12x−1+2x−1x−1=2,x≠12,1
(i)xx−1+x−1x=414
x2+(x−1)2(x)(x−1)=174
x2+x2+1−2xx2−x=174
17(x2−x)=4(2x2−2x+1)
17x2−17x−8x2+8x−4=0
9x2−9x−4=0
9x2−(12−3)x−4=0
9x2−12x+3x−4=0
3x(3x−4)+1(3x−4)=0
(3x−4)(3x+1)=0
3x−4=0
x=43 and 3x+1=0⇒x=−13
(ii) x−12x−1+2x−1x−1=2
(x−1)2+(2x−1)2(2x−1)(x−1)=2
x2+1−2x+4x2+1−4x2x2−2x−x+1=2
x2+1−2x+4x2+1−4x=4x2−4x−2x+2
x2+2=2
x2=0
x=0