1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Inequalities
Solve each of...
Question
Solve each of the following system of equations in R.
15.
2
x
-
3
4
-
2
≥
4
x
3
-
6
,
2
2
x
+
3
<
6
x
-
2
+
10
Open in App
Solution
2
x
-
3
4
-
2
≥
4
x
3
-
6
⇒
2
x
-
3
4
-
4
x
3
≥
-
6
+
2
⇒
3
2
x
-
3
-
16
x
12
≥
-
4
⇒
6
x
-
9
-
16
x
≥
-
48
⇒
-
10
x
≥
-
39
⇒
10
x
≤
39
Multiplying
both
sides
by
-
1
⇒
x
≤
39
10
⇒
x
∈
(
-
∞
,
39
10
]
.
.
.
(
i
)
Also
,
2
2
x
+
3
<
6
x
-
2
+
10
⇒
4
x
+
6
<
6
x
-
12
+
10
⇒
4
x
+
6
<
6
x
-
2
⇒
6
x
-
2
>
4
x
+
6
⇒
6
x
-
4
x
>
6
+
2
⇒
2
x
>
8
⇒
x
>
4
⇒
x
∈
4
,
∞
.
.
.
(
ii
)
Hence
,
the
solution
of
the
given
set
of
inequalities
is
the
intersection
of
(
i
)
and
(
ii
)
,
(
-
∞
,
39
10
]
∩
4
,
∞
=
∅
which
is
an
empty
set
.
Thus
,
there
is
no
solution
of
the
given
set
of
inequations
.
Suggest Corrections
0
Similar questions
Q.
Solve the following system of equations in R.
2
x
−
3
4
−
2
≤
4
x
3
−
6
,
2
(
2
x
+
3
)
<
6
(
x
−
2
)
+
10
Q.
Solve each of the following system of equations in R.
14.
5
x
-
7
<
3
x
+
3
,
1
-
3
x
2
≥
x
-
4
Q.
Solve the following systems of inequalities for all
x
ϵ
R
2
(
2
x
+
3
)
−
10
<
6
(
x
−
2
)
,
2
x
−
3
4
+
6
≥
4
+
4
x
3
Q.
Solve each of the following system of equations in R.
4
x
+
1
≤
3
≤
6
x
+
1
,
x
>
0