We have limx−>0[x(1+acosx)−bsinx]x3=13
but limx−>0[x(1+acosx)−bsinx]x3 has the
form 00 so from L' Hospital's Rule
taking derivatives we have limx−>0[1+acosx−axsinx−bcosx]x3=13 ---(1)
Putting g(x)=[1−acosx+axsinx+bcosx]3x2
(3x2)g(x)=[1−acosx+axsinx+bcosx]
Taking limx−>0 of both sides we have
0∗13=1−a+b ⟹b=a−1 ---(2)
(1) because of (2) becomes
limx−>0[1+acosx−axsinx−acosx+cosx]3x2=13
limx−>0[1−axsinx+cosx]3x2=13
L'Hospital's rule again
limx−>0[−asinx−axcosx−sinx]6x=13
L'Hospital's rule again
limx−>0[−acosx−acosx+axsinx−cosx]6=13
limx−>0[−2acosx+axsinx−cosx]6=13
Should be
limx−>0[−2acosx+axsinx−cosx]=2
−2a−1=2 ⟹a=−32andb=−52