The correct option is D (−∞,−5) ∪(5,∞).
Case 1, when x>0 then |x|=x
x2+2|x|−35>0
⇒x2+2x−35>0
⇒x2+7x−5x−35>0
⇒x(x+7)−5(x+7)>0
⇒(x+7)(x−5)>0
⇒x<−7 or x>5
⇒x>5
Case 2, when x<0 then |x|=−x
x2+2|x|−35>0
⇒x2−2x−35>0
⇒x2−7x+5x−35>0
⇒x(x−7)+5(x−7)>0
⇒(x−7)(x+5)>0
⇒x<−5 or x>7
⇒x<−5
From the solutions, we can see that range of x is (−∞,−5) ∪(5,∞).