Solve for L:L=limx→π/41−tanxπ−4x
We have,
L=limx→π4(1−tanxπ−4x)
Apply L-Hospital rule,
L=limx→π4(0−sec2x0−4)
L=limx→π4(sec2x4)
L=⎛⎜ ⎜⎝sec2π44⎞⎟ ⎟⎠
L=⎛⎜ ⎜ ⎜⎝124⎞⎟ ⎟ ⎟⎠
L=18
Hence, this is the answer.
limx→π41−tan x1−√2sin x
limx→π41−tan xx−π4