2log2x−7x−1+log2x−1x+1=1
⇒log2(x−7x−1)2+log2x−1x+1=1
⇒(x−7x−1)2×x−1x+1=21=2
⇒x2−14x+49x2−1=2
⇒x2−14x+49=2x2−2
⇒x2+14x−51=0
⇒x2+17x−3x−51=0
⇒x(x+17)−3(x+17)=0
⇒x−3=0,x+17=0
∴x=3,−17
Substitute x=−17 in 2log2x−7x−1+log2x−1x+1=1 we get
2log2−17−7−17−1+log2−17−1−17+1
=2log2−24−18+log2−18−16
=log2242182×log21816
=log2(2418×2418×1816)
=log22=1
Hence x=−17
x=3 is not valid solution
∵ for x=3 the log is not defined.