Solve for x, 2sin3x=cosx.
Here 2sin2x=cosxsinx
{Q sinx ≠ 0 because sin x = 0 does not satisfy the given equation}
or, 2cosec2x=cotx or 2=cotx(1+cot2x)
or, cot3x+cotx−2=0
By trial, cot x = 1 satisfies the equation.
∴(cotx−1)(cot2x+cotx+2)=0
⇒cotx=1 or cot2x+cotx+2=0
When cotx=1,tanx=1⇒x=nπ+π4,n∈I.
When cot2x+cotx+2=0,
cot x has no real value because D = 1- 8 < 0
∴ Solutions are x=nπ+π4,n∈I