Given,
6a2x2−7abx−3b2=0;a≠0
⇒x2−7abx6a2−3b26a2=0
⇒x2−7b6ax−b22a2=0
⇒x2−7b6ax+49b2144a2−49b2144a2−b22a2=0
⇒(x−7b12a)2=49b2144a2+b22a2
⇒(x−7b12a)=±11b12a
⇒x=11b12a+7b12a or x=−11b12a+7b12a
⇒x=3b2aorx=−b3a