Solve for x and y : 12sinx+5cosx=2y2−8y+21.
√122+52(1213sinx+513cosx)=2(y2−4y+4)+13
or 13cos(x−a)=2(y−2)2+13,
where cosa=513
Clearly , LHS ≤ 13 because the greatest value of cos(x - a) is 1 when x = a.
Also RHS ≥ 13 because the least value of RHS is 13 when y = 2
∴ the equation can hold if the value of each side = 13
Thus cos(x - a) = 1 and y = 2
x - a = 2nπ and y = 2
x = 2nπ + a and y = 2
x=2nπ+cos−1(513) and y=2 where n∈I