To solve for x and y
Given equations are
4sinx+31cosy=11
5.16sinx−2.31cosy=2
Let ,
4sinx=a
31cosy=b
On Putting these value ,equations becomes
a+b=11
5a2−2b=2
On Adding both equations , we get
5a2+2a−24=0
On solving this equation , we get
a=2anda=−24/10
Here ,
4sinx=−24/10 is not Possible
Therefore , we take
4sinx=2
sinx=12
x=Π6
On Putting this value , we get
a+b=11
2+b=11
b=9
31cosy=9
cosy=−12
y=2Π3ory=−Π3
Hence ,
x=Π6and
y=2Π3