Solve for x and y:
12(3x+y)+53(3x−y)=−3254(x+2y)−35(3x−2y)=6160.
12(x+2y)+53(3x−2y)=−3254(x+2y)−35(3x−2y)=6160
Put 1(x+2y)=u1(3x−2y)=v
u2+5v3=−325u4−3v5=61603u+10v6=−3225u−12v20=61603u+10v3=−3125u−12v1=613
3u+10v=−9−−−(1)75u−36v=61−−−(2)
(1)×75225u+750v=−675−−−(3)(2)×3225u−108v=183−−−(4)
(3)−(4)225u+750v−(225u−108v)=−675−183225u+750v−225u+108v=−858858v=−858v=−1
Put v=−1 in(1)3u+10(−1)=−93u−10=−93u=−9+10=1u=13
Now 1(x+2y)=13x+2y=3−−−(5)1(3x−2y)=−1−3x+2y=13x−2y=−1−−−(6)
(5)+(6)x+2y+3x−2y=3+−14x=2x=12
x+2y=32y=3−x2y=3−122y=52y=54
x=12y=54