Solve for xandy
2x-1+y-24=2;32(x-1)+2(y-2)5=4720
Step 1:Giving substitution
Given ,
2x-1+y-24=232(x-1)+2(y-2)5=4720
Let1x-1=Aandy-2=Bi.e;2A+B4=2⇒8A+B=8.............................(1)32A+25B=4720LCM=10,15A+4B10=4720⇒15A+4B=472⇒30A+8B=47..............................(2)
Step 2 : Solving for A and B using elimination method
equation(1)×8⇒64A+8B=64..............................(3)equation(2)⇒30A+8B=47.................................(2)
equation(3)-(2)⇒34A=17⇒A=1734=12SubstituteA=12in(1)1⇒8x12+B=8⇒4+B=8⇒B=8-4=4
Step 3 : finding x and y
We have ,
A=1x-1⇒12=1x-1⇒x-1=2⇒x=3B=y-2⇒4=y-2⇒y=4+2=6
Therefore the value of x=3andy=6
x+2y+12x-y+1=2;3x-y+1x-y+3=5
x-4x-3=y+4y+7;x+5x+2=y-1y-2
242x+y-133x+2y=2263x+2y+82x+y=3
3x-23y+7=5x-15y+16;3x-15x-9=6y-52y+3
16x+3+3y-2=5;8x+3-1y-2=0