Solve for x and y:
xa+yb=a+b ,
xa2+yb2=2.
Given xa+yb=a+b
Multiply by ( 1a) both sides, we get
xa2+yab=1+ba → (1)
Given other linear equation as
xa2+yb2=2 → (2)
Subtract (2) from (1), we get
xa2+yab=1+ba
xa2+yb2=2
----------------------------------
(yab)−(yb2)=(ba)−1
⇒ y[(b−a)ab2]=(b−a)a
∴ y=b2
Put y = b^2 in xa2+yb2=2
⇒ xa2+b2b2=2
⇒ xa2+1=2
⇒ xa2=1
∴ x=a2