The correct option is D
12 and 54
12(x+2y)+53(3x−2y)=−32....(1)54(x+2y)−35(3x−2y)=6160....(2)Let 1x+2y=a,13x−2y=bFrom(1), a2+5b3=−32⇒3a+10b6=−32⇒3a+10b=−32×6⇒3a+10b=−9...(3)from(3), 5a4=3b5=6160⇒25a−12b20=6160⇒75a−36b=61 ...(4)3a+10b=−9...(3)75a−36b=61 ...(4)Multiply by 25 in (3),we get:25(3a+10b)=25(−9)⇒75a+250b=−225...(5)Subtracting (4) from (5), we get:75a+250b=−22575a−36b=61− + −−−−−−−−− 286b=−286⇒b=−286286∴ b=−1Substituting b=−1 in equation (3)3a+10b=−9⇒3a+10(−1)=−9⇒3a−10=−9⇒3a=−9+10⇒3a=1∴a=13a=13 and b=−1⇒1x+2y=13 ⇒13x−2y=−1∴x+2y=3..(6) ∴3x−2y=−1...(7)Adding (6) and (7),we get:x+2y=33x−2y=−1−−−−−−−4x =2⇒4x=2⇒x=24⇒x=12Substituting n=12 in (6), we get:x+2y=3⇒12+2y=3⇒2y=3−12⇒2y=52⇒y=52×12∴y=54