Solve for xandy
x+y=a-b;ax-by=a2+b2
Step 1:Simplification to make the'y' coefficient as same
x+y=a-b...................................(1)ax-by=a2+b2...............................(2)
Equation (1) ×b
Equation(1)⇒bx+by=ab-b2.................................(3)Equation(2)⇒ax-by=a2+b2..........................................(2)
Step 2: Applying elimination method to find the value of x
equation(2)+(3)⇒ax+bx=a2+ab⇒x(a+b)=a(a+b)⇒x=a(a+b)a+b⇒x=a
Step 3:Finding the value of 'y'by substitution method
Substitutethevalueofx=ainequation(1)Equation(1)⇒a+y=a-b⇒y=a-b-a⇒y=-b
Therefore the values ofx=aandy=-b
ax+by=a-b;bx-ay=a+b
x-yxy=9;x+yxy=5
x+y-1x-y+1=7;y-x+1x-y+1=35
13x+y-56x-y=21;11x+y-23x-y=1427
x+y+3x-y-3=-32;x-y-3x-y+3=-2