The given system of equations may be written asax+by−c=0bx+ay−(1+c)=0
By cross-multiplication, we have
xb×−(1+c)−a×−c=−ya×−(1+c)−b×−c=1a×a−b×b
⇒x−b(1+c)+ac=−y−a(1+c)+bc=1a2−b2
⇒xac−bc−b=yac−bc+a=1a2−b2
⇒xc(a−b)−b=yc(a−b)+a=1(a−b)(a+b)
⇒x=c(a−b)−b(a−b)(a+b) and y=c(a−b)+a(a−b)(a+b)
⇒x=ca+b−b(a−b)(a+b) and y=ca+b+a(a−b)(a+b)
Hence, the solution of the given system of equations is
x=ca+b−ba2−b2,y=ca+b+aa2−b2.