The correct option is A 1 and √3
We have,
x2−(√3+1)x+√3=0
⇒x2−2(√3+1)2.x+√3=0
⇒x2−2.x.(√3+1)2+√3=0
⇒x2−2.x.(√3+12)+(√3+12)2−(√3+12)2+√3=0
⇒[x−(√3+1)2]2=(√3+12)2−√3
⇒[x−(√3+1)2]2=(√3)2+(1)2+2√34−√3
⇒[x−(√3+1)2]2=(√3)2+(1)2+2√3−4√34
⇒[x−(√3+1)2]2=(√3)2+(1)2−2√34=(√3−1)222
⇒x−(√3+12)=±(√3−1)2
⇒x=√3+12±(√3−1)2
⇒x=√3+12+(√3−1)2=√3+1+√3−12=2√32
⇒x=√3
or
⇒x=√3+12−(√3−1)2=√3+1−√3+12=22
x=1
x=1 and x=√3
So, a is the correct option.