1(x−1)(x−2)+1(x−2)(x−3)+1(x−3)(x−4)=16⇒(x−3)(x−4)+(x−1)(x−4)+(x−1)(x−2)(x−1)(x−2)(x−3)(x−4)=16⇒6(x2−7x+12+x2−5x+4+x2−3x+2)−(x2−3x+2)(x2−7x+12)⇒6(3x2−15x+18)=(x4−10x3−35x2−50x+24)Divisor=x2−5x+6Quotient=x2−5x+4Remainde=0⇒18=x2−5x+4⇒x2−5x−14=0⇒x2+2x−7x−14=0⇒x(x+2)−7(x+2)=0⇒(x−7)(x+2)=0x=7or−2