1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of Functions
Solve for x...
Question
Solve for
x
,
|
x
−
1
|
x
+
2
<
1
x
∈
R
Open in App
Solution
|
x
−
1
|
x
+
2
<
1
Let
x
>
1
so,
x
−
1
−
x
−
2
x
+
2
<
0
−
3
x
+
2
<
0
so,
1
x
+
2
>
0
x
>
−
2
x
>
1
Let
x
<
1
so,
−
(
x
−
1
)
−
x
−
2
x
+
2
<
0
−
2
x
−
1
x
+
2
<
0
x
+
1
2
x
+
2
>
0
x
∈
(
−
∞
,
−
2
)
∪
(
−
1
2
,
∞
)
so,
x
∈
(
∞
,
−
2
)
∪
(
−
1
2
,
∞
)
so, combining we get,
⇒
x
∈
(
∞
,
−
2
)
∪
(
−
1
2
,
∞
)
Hence, the answer is
x
∈
(
−
∞
,
−
2
)
∪
(
−
1
2
,
∞
)
.
Suggest Corrections
0
Similar questions
Q.
Solve for
x
:
tan
−
1
(
x
−
2
x
−
1
)
+
tan
−
1
(
x
+
2
x
+
1
)
=
π
4
Q.
Solve for
x
:
tan
−
1
x
=
1
2
cot
−
1
x
.
Q.
Solve for x:
(i)
x
-
1
x
-
2
+
x
-
3
x
-
4
=
3
1
3
;
x
â‰
2
,
4
(ii)
1
x
-
1
x
-
2
=
3
,
x
â‰
0
,
2
(iii)
x
+
1
x
=
3
,
x
â‰
0
(iv)
16
x
-
1
=
15
x
+
1
,
x
â‰
0
,
-
1
(v)
1
x
-
3
-
1
x
+
5
=
1
6
,
x
â‰
3
,
-
5