The correct option is A x=a(5/4)a2
logx(ax)15+loga(xa)15
=15[logx(a)−1+loga(x)−1],(∵logax=xloga)
=15[ln(x)ln(a)+ln(a)ln(x)−2],(∵logba=logalogb)
Let ln(x)ln(a)=t
=15[t+1t−2]
=15(√t−1√t)2...(i)
And logx(ax)15+loga(ax)15
=15[logx(a)+loga(x)+2]
=15(√t+1√t)2 ...(ii)
Substituting in the equation we get 1√5[√t−1√t+√t+1√t]=a
2√t=√5a
4t=5a2
4loga(x)=5a2
x=a54a2.